List of all the articles of Ribozyme.
Year | Author | Title | Ribozyme name | Description | Journal |
---|---|---|---|---|---|
2004 | Adams, P. L., M. R. Stahley, A. B. Kosek, J. Wang and S. A. Strobel | Crystal structure of a self-splicing group I intron with both exons. | Group I self-splicing intron | Crystal structure of Azoarcus group I intron with both exons | Nature 430 (6995): 45-50. |
2004 | Guo, F., A. R. Gooding and T. R. Cech | Structure of the Tetrahymena ribozyme: base triple sandwich and metal ion at the active site. | Group I self-splicing intron | Crystal structure of an active Tetrahymena ribozyme | Mol Cell 16 (3): 351-62. |
2005 | Golden, B. L., H. Kim and E. Chase | Crystal structure of a phage Twort group I ribozyme-product complex. | Group I self-splicing intron | Crystal structure of phage Twort group I ribozyme-product complex | Nat Struct Mol Biol 12 (1): 82-9. |
2005 | Stahley, M. R. and S. A. Strobel | Structural evidence for a two-metal-ion mechanism of group I intron splicing. | Group I self-splicing intron | Crystal structure of a catalytically active Azoarcus group I intron splicing intermediate | Science 309 (5740): 1587-90. |
2021 | Su, Z., K. Zhang, K. Kappel, S. Li, M. Z. Palo, G. D. Pintilie, R. Rangan, B. Luo, Y. Wei, R. Das and W. Chiu | Cryo-EM structures of full-length Tetrahymena ribozyme at 3.1 A resolution. | Group I self-splicing intron | Cryo-EM structures of full-length Tetrahymena ribozyme | Nature 596 (7873): 603-607. |
1989 | Williamson, C. L., N. M. Desai and J. M. Burke | Compensatory mutations demonstrate that P8 and P6 are RNA secondary structure elements important for processing of a group I intron. | Group I self-splicing intron | Verify the existence and importance of P6, P8 | Nucleic Acids Res 17 (2): 675-89. |
1989 | Doudna, J. A., B. P. Cormack and J. W. Szostak | RNA structure, not sequence, determines the 5' splice-site specificity of a group I intron. | Group I self-splicing intron | Conserved UG is an important recognition element for determining guanosine attack sites | Proc Natl Acad Sci U S A 86 (19): 7402-6. |
1989 | Flor, P. J., J. B. Flanegan and T. R. Cech | A conserved base pair within helix P4 of the Tetrahymena ribozyme helps to form the tertiary structure required for self-splicing. | Group I self-splicing intron | The conserved base pair C109-G212 in P4 contributes to the tertiary structure required for self-splicing | EMBO J 8 (11): 3391-9. |
1982 | Kruger, K., P. J. Grabowski, A. J. Zaug, J. Sands, D. E. Gottschling and T. R. Cech | Self-splicing RNA: autoexcision and autocyclization of the ribosomal RNA intervening sequence of Tetrahymena. | Group I self-splicing intron | Discovery | Cell 31 (1): 147-57. |
1982 | Davies, R. W., R. B. Waring, J. A. Ray, T. A. Brown and C. Scazzocchio | Making ends meet: a model for RNA splicing in fungal mitochondria. | Group I self-splicing intron | Determination of shared secondary structure | Nature 300 (5894): 719-24. |
1986 | Zaug, A. J. and T. R. Cech | The intervening sequence RNA of Tetrahymena is an enzyme. | Group I self-splicing intron | The intervening sequence RNA of Tetrahymena is an enzyme | Science 231 (4737): 470-5. |
1988 | Price, J. V. and T. R. Cech | Determinants of the 3' splice site for self-splicing of the Tetrahymena pre-rRNA. | Group I self-splicing intron | ωG is closely related to the choice of 3' splice site | Genes Dev 2 (11): 1439-47. |
1990 | Michel, F. and E. Westhof | Modelling of the three-dimensional architecture of group I catalytic introns based on comparative sequence analysis. | Group I self-splicing intron | 3D models of group I intron based on comparative sequence analysis | J Mol Biol 216 (3): 585-610. |
1996 | Cate, J. H., A. R. Gooding, E. Podell, K. Zhou, B. L. Golden, C. E. Kundrot, T. R. Cech and J. A. Doudna | Crystal structure of a group I ribozyme domain: principles of RNA packing. | Group I self-splicing intron | Crystal structure of Tetrahymena P4-P6 domain | Science 273 (5282): 1678-85. |
1998 | Golden, B. L., A. R. Gooding, E. R. Podell and T. R. Cech | A preorganized active site in the crystal structure of the Tetrahymena ribozyme. | Group I self-splicing intron | Crystal structure of an engineered, active Tetrahymena ribozyme at 5.0 Å resolution | Science 282 (5387): 259-64. |
2011 | Benz-Moy, T. L. and D. Herschlag | Structure-function analysis from the outside in: long-range tertiary contacts in RNA exhibit distinct catalytic roles. | Group I self-splicing intron | Long-range tertiary contacts in RNA exhibit distinct catalytic roles | Biochemistry 50 (40): 8733-55. |
2022 | Liu, D., F. A. Thelot, J. A. Piccirilli, M. Liao and P. Yin | Sub-3-A cryo-EM structure of RNA enabled by engineered homomeric self-assembly. | Group I self-splicing intron | Tetrahymena group I intron at 2.98-Å resolution overall (2.85 Å for the core) | Nat Methods 19 (5): 576-585. |
1994 | Damberger, S. H. and R. R. Gutell | A comparative database of group I intron structures. | Group I self-splicing intron | Comparative database | Nucleic Acids Res 22 (17): 3508-10. |
2008 | Zhou, Y., C. Lu, Q. J. Wu, Y. Wang, Z. T. Sun, J. C. Deng and Y. Zhang | GISSD: Group I Intron Sequence and Structure Database. | Group I self-splicing intron | Sequence and structure database | Nucleic Acids Res 36 (Database issue): D31-7. |
2009 | Vicens, Q. and T. R. Cech | A natural ribozyme with 3',5' RNA ligase activity. | A natural ribozyme with 3',5' RNA ligase activity | Discovery | Nat Chem Biol 5(2): 97-9. |
2004 | J. Proudfoot and A. Akoulitchev | Autocatalytic RNA cleavage in the human beta-globin pre-mRNA promotes transcription termination. | CoTC ribozyme(Beta-globin co-transcriptional cleavage ribozyme) | Discovery that the CoTC process in the human beta-globin gene involves an RNA self-cleaving activity | Nature 432(7016): 526-530. |
2006 | Salehi-Ashtiani, K., A. Luptak, A. Litovchick and J. W. Szostak | A genomewide search for ribozymes reveals an HDV-like sequence in the human CPEB3 gene. | CPEB3 ribozyme | A HDV-like sequence in the human CPEB3 gene | Science 313 (5794): 1788-92. |
2014 | Skilandat, M., M. Rowinska-Zyrek and R. K. Sigel | Solution structure and metal ion binding sites of the human CPEB3 ribozyme's P4 domain. | CPEB3 ribozyme | NMR solution structure of CPEB3 ribozyme's P4 domain | J Biol Inorg Chem 19 (6): 903-12. |
2016 | Skilandat, M., M. Rowinska-Zyrek and R. K. Sigel | Secondary structure confirmation and localization of Mg2+ ions in the mammalian CPEB3 ribozyme. | CPEB3 ribozyme | NMR studies confirm secondary structure and Mg2+ location in CPEB3 ribozyme | RNA 22 (5): 750-63. |
2021 | Bendixsen, D. P., T. B. Pollock, G. Peri and E. J. Hayden | Experimental Resurrection of Ancestral Mammalian CPEB3 Ribozymes Reveals Deep Functional Conservation. | CPEB3 ribozyme | The functional conservation of CPEB3 ribozyme in mammalian evolution | Mol Biol Evol 38 (7): 2843-2853. |
2014 | Meyer, M., H. Nielsen, V. Olieric, P. Roblin, S. D. Johansen, E. Westhof and B. Masquida | Speciation of a group I intron into a lariat capping ribozyme. | Lariat capping ribozyme | Crystal structures of the precleavage and postcleavage lariat-capping ribozymes | Proc Natl Acad Sci U S A 111(21): 7659-7664. |
2002 | Johansen, S., C. Einvik and H. Nielsen | DiGIR1 and NaGIR1: naturally occurring group I-like ribozymes with unique core organization and evolved biological role. | Lariat capping ribozyme | REVIEW | Biochimie 84(9): 905-912. |
2002 | Vader, A., S. Johansen and H. Nielsen | The group I-like ribozyme DiGIR1 mediates alternative processing of pre-rRNA transcripts in Didymium iridis. | Lariat capping ribozyme | DiGIR1 mediates alternative processing of pre-rRNA transcripts in Didymium iridis | Eur J Biochem 269(23): 5804-5812. |
2014 | Tang, Y., H. Nielsen, B. Masquida, P. P. Gardner and S. D. Johansen | Molecular characterization of a new member of the lariat capping twin-ribozyme introns. | Lariat capping ribozyme | Molecular characterization of a new member of the lariat capping twin-ribozyme introns | Mob DNA 5: 25. |
2021 | Pietschmann, M., G. Tempel, M. Halladjian, N. Krogh and H. Nielsen | Use of a Lariat Capping Ribozyme to Study Cap Function In Vivo. | Lariat capping ribozyme | Use of a lariat capping ribozyme to study cap function in vivo | Methods Mol Biol 2167: 271-285. |
1994 | Johansen, S. and V. M. Vogt | An intron in the nuclear ribosomal DNA of Didymium iridis codes for a group I ribozyme and a novel ribozyme that cooperate in self-splicing. | Lariat capping ribozyme | Sequence discovered | Cell 76(4): 725-734. |
1995 | Decatur, W. A., C. Einvik, S. Johansen and V. M. Vogt | Two group I ribozymes with different functions in a nuclear rDNA intron. | Lariat capping ribozyme | Catalytic RNA element renamed as the group I-like ribozyme, GIR1 | EMBO J 14(18): 4558-4568. |
2005 | Nielsen, H., E. Westhof and S. Johansen | An mRNA is capped by a 2', 5' lariat catalyzed by a group I-like ribozyme. | Lariat capping ribozyme | GIR1 makes tiny lariats | Science 309(5740): 1584-1587. |
2008 | eckert, B., H. Nielsen, C. Einvik, S. D. Johansen, E. Westhof and B. Masquida | Molecular modelling of the GIR1 branching ribozyme gives new insight into evolution of structurally related ribozymes. | Lariat capping ribozyme | Molecular modelling of the GIR1 branching ribozyme | EMBO J 27(4): 667-678. |
2017 | Krogh, N., M. Pietschmann, M. Schmid, T. H. Jensen and H. Nielsen | Lariat capping as a tool to manipulate the 5' end of individual yeast mRNA species in vivo. | Lariat capping ribozyme | Lariat capping as a tool to manipulate the 5' end of mRNA | RNA 23(5): 683-695. |
2006 | Klein, D. and A. Ferré-D'Amaré | Structural basis of glmS ribozyme activation by glucosamine-6-phosphate. | GlmS ribozyme | Crystal structure | Science (New York, N.Y.) 313(5794): 1752-1756. |
2007 | Cochrane, J., S. Lipchock and S. Strobel | Structural investigation of the GlmS ribozyme bound to Its catalytic cofactor. | GlmS ribozyme | Crystal structure | Chemistry & biology 14(1): 97-105. |
2007 | Klein, D., M. Been and A. Ferré-D'Amaré | Essential role of an active-site guanine in glmS ribozyme catalysis. | GlmS ribozyme | Essential role of an active-site guanine G40 in glmS ribozyme catalysis | Journal of the American Chemical Society 129(48): 14858-14859. |
2017 | Schüller, A., D. Matzner, C. Lünse, V. Wittmann, C. Schumacher, S. Unsleber, H. Brötz-Oesterhelt, C. Mayer, G. Bierbaum and G. Mayer | Activation of the glmS Ribozyme Confers Bacterial Growth Inhibition. | GlmS ribozyme | GlcN6P cofactor play a variety of catalytic roles in glmS ribozyme | Chembiochem : a European journal of chemical biology 18(5): 435-440. |
2004 | Winkler, W., A. Nahvi, A. Roth, J. Collins and R. Breaker | Control of gene expression by a natural metabolite-responsive ribozyme. | GlmS ribozyme | Discovery,Secondary structure | Nature 428(6980): 281-286. |
2006 | Soukup, G. | Core requirements for glmS ribozyme self-cleavage reveal a putative pseudoknot structure. | GlmS ribozyme | Pseudoknot structure | Nucleic acids research 34(3): 968-975. |
2007 | Collins, J., I. Irnov, S. Baker and W. Winkler | Mechanism of mRNA destabilization by the glmS ribozyme. | GlmS ribozyme | Mechanism of mRNA destabilization by the glms ribozyme | Genes & development 21(24): 3356-3368. |
2009 | Cochrane, J., S. Lipchock, K. Smith and S. Strobel | Structural and chemical basis for glucosamine 6-phosphate binding and activation of the glmS ribozyme. | GlmS ribozyme | Chemical Mechanism | Biochemistry 48(15): 3239-3246. |
2010 | Ferré-D'Amaré, A. | The glmS ribozyme: use of a small molecule coenzyme by a gene-regulatory RNA. | GlmS ribozyme | Use of a small molecule coenzyme by a gene-regulatory RNA | Quarterly reviews of biophysics 43(4): 423-447. |
2010 | Klawuhn, K., J. Jansen, J. Souchek, G. Soukup and J. Soukup | Analysis of metal ion dependence in glmS ribozyme self-cleavage and coenzyme binding. | GlmS ribozyme | The role of Mg2+ in active sites | Chembiochem : a European journal of chemical biology 11(18): 2567-2571. |
2011 | Watson, P. and M. Fedor | The glmS riboswitch integrates signals from activating and inhibitory metabolites in vivo. | GlmS ribozyme | The glmS riboswitch integrates signals from activating and inhibitory metabolites in vivo | Nature structural & molecular biology 18(3): 359-363. |
2011 | McCown, P., A. Roth and R. Breaker | An expanded collection and refined consensus model of glmS ribozymes. | GlmS ribozyme | An expanded collection and refined consensus model of glmS ribozymes | RNA (New York, N.Y.) 17(4): 728-736. |
2012 | Viladoms, J. and M. Fedor | The glmS ribozyme cofactor is a general acid-base catalyst. | GlmS ribozyme | The glmS ribozyme cofactor is a general acid-base catalyst | Journal of the American Chemical Society 134(46): 19043-19049. |
2013 | Lau, M. W. L. and A. R. Ferré-D Amaré | An in vitro evolved glmS ribozyme has the wild-type fold but loses coenzyme dependence. | GlmS ribozyme | An in vitro evolved glmS ribozyme has the wild-type fold but loses coenzyme dependence | Journal of the American Chemical Society 134(46): 19043-19049. |
2017 | Bingaman, J., S. Zhang, D. Stevens, N. Yennawar, S. Hammes-Schiffer and P. Bevilacqua | The GlcN6P cofactor plays multiple catalytic roles in the glmS ribozyme. | GlmS ribozyme | GlcN6P cofactor play a variety of catalytic roles in glmS ribozyme | Nature chemical biology 13(4): 439-445. |
2018 | Cruz-Bustos, T., S. Ramakrishnan, C. Cordeiro, M. Ahmed and R. Docampo | A Riboswitch-based Inducible Gene Expression System for Trypanosoma brucei. | GlmS ribozyme | The glmS ribozyme could be used as a tool to study essential genes in T. brucei | The Journal of eukaryotic microbiology 65(3): 412-421. |
2020 | Andreasson, J., A. Savinov, S. Block and W. Greenleaf | Comprehensive sequence-to-function mapping of cofactor-dependent RNA catalysis in the glmS ribozyme. | GlmS ribozyme | Comprehensive sequence-to-function mapping of cofactor-dependent RNA catalysis in the glmS ribozyme | Nature communications 11(1): 1663. |
2021 | Traykovska, M., K. Popova and R. Penchovsky | Targeting glmS Ribozyme with Chimeric Antisense Oligonucleotides for Antibacterial Drug Development. | GlmS ribozyme | The glmS ribozyme is a very suitable target for antibacterial drug development with antisense oligonucleotides | ACS synthetic biology 10(11): 3167-3176. |
1980 | Halbreich, A., P. Pajot, M. Foucher, C. Grandchamp and P. Slonimski | A pathway of cytochrome b mRNA processing in yeast mitochondria: specific splicing steps and an intron-derived circular DNA. | Group II self-splicing intron | "Circular" introns were found to splice out from a mitochondrial gene | Cell 19 (2): 321-9. |
1982 | Michel, F., A. Jacquier and B. Dujon | Comparison of fungal mitochondrial introns reveals extensive homologies in RNA secondary structure. | Group II self-splicing intron | First secondary structure model by comparative sequence analysis | Biochimie 64 (10): 867-81. |
1986 | van der Veen, R., A. C. Arnberg, G. van der Horst, L. Bonen, H. F. Tabak and L. A. Grivell | Excised group II introns in yeast mitochondria are lariats and can be formed by self-splicing in vitro. | Group II self-splicing intron | Group II introns form a lariat by self-splicing in vivo | Cell 44 (2): 225-34. |
1986 | Peebles, C. L., P. S. Perlman, K. L. Mecklenburg, M. L. Petrillo, J. H. Tabor, K. A. Jarrell and H. L. Cheng | A self-splicing RNA excises an intron lariat. | Group II self-splicing intron | Group II introns form a lariat by self-splicing in vivo | Cell 44 (2): 213-23. |
1994 | Chanfreau, G. and A. Jacquier | Catalytic site components common to both splicing steps of a group II intron. | Group II self-splicing intron | Common catalytic site to both splicing steps. | Cell 178 (3): 612-623.e12. |
1995 | Peebles, C. L., M. Zhang, P. S. Perlman and J. S. Franzen | Catalytically critical nucleotide in domain 5 of a group II intron. | Group II self-splicing intron | Catalytically critical nucleotide in domain 5 | Proc Natl Acad Sci U S A 92 (10): 4422-6. |
1995 | Boulanger, S. C., S. M. Belcher, U. Schmidt, S. D. Dib-Hajj, T. Schmidt and P. S. Perlman | Studies of point mutants define three essential paired nucleotides in the domain 5 substructure of a group II intron. | Group II self-splicing intron | Three essential paired nucleotides in the domain 5 | Mol Cell Biol 15 (8): 4479-88. |
1996 | Schmidt, U., M. Podar, U. Stahl and P. S. Perlman | Mutations of the two-nucleotide bulge of D5 of a group II intron block splicing in vitro and in vivo: phenotypes and suppressor mutations. | Group II self-splicing intron | Two-nucleotide bulge in D5 are important | RNA 2 (11): 1161-72. |
1996 | Abramovitz, D. L., R. A. Friedman and A. M. Pyle | Catalytic role of 2'-hydroxyl groups within a group II intron active site. | Group II self-splicing intron | Eight hydroxyl groups in D5 are the key to activity | Science 271 (5254): 1410-3. |
1997 | Costa, M., E. Deme, A. Jacquier and F. Michel | Multiple tertiary interactions involving domain II of group II self-splicing introns. | Group II self-splicing intron | D2 stabilizes the ribozyme core and controls the location of D6 and branching sites | J Mol Biol 267 (3): 520-36. |
2000 | Boudvillain, M., A. de Lencastre and A. M. Pyle | A tertiary interaction that links active-site domains to the 5' splice site of a group II intron. | Group II self-splicing intron | Demonstration of tertiary interactions linking the catalytically critical regions of D1 to D5 and anchoring them at the 5' splice site | Nature 406 (6793): 315-8. |
2002 | Zhang, L. and J. A. Doudna | Structural insights into group II intron catalysis and branch-site selection. | Group II self-splicing intron | Crystal structures of 70-nucleotide RNAs of yeast ai5γ D5 and D6 (3 Å) | Science 295 (5562): 2084-8. |
2005 | Fedorova, O. and A. M. Pyle | Linking the group II intron catalytic domains: tertiary contacts and structural features of domain 3. | Group II self-splicing intron | D3 is a functional group important for catalytic activity, and the interaction of D3 and D5 promotes catalysis | EMBO J 24 (22): 3906-16. |
2005 | de Lencastre, A., S. Hamill and A. M. Pyle | A single active-site region for a group II intron. | Group II self-splicing intron | Single active-site region for group II intron catalysis | Nat Struct Mol Biol 12 (7): 626-7. |
2007 | Fedorova, O. and N. Zingler | Group II introns: structure, folding and splicing mechanism. | Group II self-splicing intron | Review: splicing mechanism | Biol Chem 388 (7): 665-78. |
2008 | Toor, N., K. S. Keating, S. D. Taylor and A. M. Pyle | Crystal structure of a self-spliced group II intron. | Group II self-splicing intron | The first 3D structure of the Oceanobacillus iheyensis group IIC intron | Science 320 (5872): 77-82. |
2010 | Pyle, A. M. | The tertiary structure of group II introns: implications for biological function and evolution. | Group II self-splicing intron | Common tertiary structure of the catalytic core | Crit Rev Biochem Mol Biol 45 (3): 215-32. |
2012 | Marcia, M. and A. M. Pyle | Visualizing group II intron catalysis through the stages of splicing. | Group II self-splicing intron | Crystal structures of a group II intron at different stages of catalysis. | Cell 151 (3): 497-507. |
2014 | Robart, A. R., R. T. Chan, J. K. Peters, K. R. Rajashankar and N. Toor | Crystal structure of a eukaryotic group II intron lariat. | Group II self-splicing intron | Crystal structure of the intronic lariat form of eukaryotic group IIB | Nature 514 (7521): 193-7. |
2016 | Qu, G., P. S. Kaushal, J. Wang, H. Shigematsu, C. L. Piazza, R. K. Agrawal, M. Belfort and H. W. Wang | Structure of a group II intron in complex with its reverse transcriptase. | Group II self-splicing intron | Cryo-EM structures of a group Ⅱ intron in complex with its maturase | Nat Struct Mol Biol 23 (6): 549-57. |
2017 | Zhao, C. and A. M. Pyle | Structural Insights into the Mechanism of Group II Intron Splicing. | Group II self-splicing intron | Review: Structural insights into the splicing mechanism | Trends Biochem Sci 42 (6): 470-482. |
2019 | Haack, D. B., X. Yan, C. Zhang, J. Hingey, D. Lyumkis, T. S. Baker and N. Toor | Cryo-EM Structures of a Group II Intron Reverse Splicing into DNA. | Group II self-splicing intron | Cryo-EM structures of a group II intron reverse splicing into DNA | Cell 178 (3): 612-623.e12. |
2020 | Liu, N., X. Dong, C. Hu, J. Zeng, J. Wang, J. Wang, H. W. Wang and M. Belfort | Exon and protein positioning in a pre-catalytic group II intron RNP primed for splicing. | Group II self-splicing intron | Two cryo-EM structures of group II intron RNPs in their pre-catalytic state | Nucleic Acids Res 48 (19): 11185-11198. |
2002 | Rupert, P., A. Massey, S. Sigurdsson and A. Ferré-D'Amaré | Transition state stabilization by a catalytic RNA. | Hairpin ribozyme | Crystal structure | Science (New York, N.Y.) 298(5597): 1421-1424. |
2006 | Salter, J., J. Krucinska, S. Alam, V. Grum-Tokars and J. Wedekind | Water in the active site of an all-RNA hairpin ribozyme and effects of Gua8 base variants on the geometry of phosphoryl transfer. | Hairpin ribozyme | Crystal structure | Biochemistry 45(3): 686-700. |
1997 | Hampel, A. and J. Cowan | A unique mechanism for RNA catalysis: the role of metal cofactors in hairpin ribozyme cleavage. | Hairpin ribozyme | Chemical Mechanism | Chemistry & biology 4(7): 513-517. |
1998 | Shippy, R., A. Siwkowski and A. Hampel | Mutational analysis of loops 1 and 5 of the hairpin ribozyme. | Hairpin ribozyme | Loops 1 and 5 of the hairpin ribozyme | Biochemistry 37(2): 564-570. |
2001 | Rupert, P. and A. Ferré-D'Amaré | Crystal structure of a hairpin ribozyme-inhibitor complex with implications for catalysis. | Hairpin ribozyme | Crystal structure | Nature 410(6830): 780-786. |
1986 | Buzayan, J. M., W. L. Gerlach and G. Bruening | Non-enzymatic cleavage and ligation of RNAs complementary to a plant virus satellite RNA. | Hairpin ribozyme | Discovery | Nature. |
1993 | Berzal-Herranz, A., S. Joseph, B. Chowrira, S. Butcher and J. Burke | Essential nucleotide sequences and secondary structure elements of the hairpin ribozyme. | Hairpin ribozyme | Sequence/Secondary structure | The EMBO journal 12(6): 2567-2573. |
2001 | Pinard, R., K. Hampel, J. Heckman, D. Lambert, P. Chan, F. Major and J. Burke | Functional involvement of G8 in the hairpin ribozyme cleavage mechanism. | Hairpin ribozyme | Essential role of an active-site G8 in hairpin ribozyme catalysis | The EMBO journal 20(22): 6434-6442. |
2005 | Kuzmin, Y., C. Da Costa, J. Cottrell and M. Fedor | Role of an active site adenine in hairpin ribozyme catalysis. | Hairpin ribozyme | Essential role of an active-site A38 in hairpin ribozyme catalysis | Journal of molecular biology 349(5): 989-1010. |
2012 | Kath-Schorr, S., T. Wilson, N. Li, J. Lu, J. Piccirilli and D. Lilley | General acid-base catalysis mediated by nucleobases in the hairpin ribozyme. | Hairpin ribozyme | Catalytic mechanism | Journal of the American Chemical Society 134(40): 16717-16724. |
2019 | Hieronymus, R. and S. Müller | Engineering of hairpin ribozyme variants for RNA recombination and splicing. | Hairpin ribozyme | Engineering of hairpin ribozyme variants | Annals of the New York Academy of Sciences 1447(1): 135-143. |
2021 | Song, E., E. Jiménez, H. Lin, K. Le Vay, R. Krishnamurthy and H. Mutschler | Prebiotically Plausible RNA Activation Compatible with Ribozyme-Catalyzed Ligation. | Hairpin ribozyme | Situ activation of RNA substrates under reaction conditions amenable to catalysis by the hairpin ribozyme | Angewandte Chemie (International ed. in English) 60(6): 2952-2957. |
2021 | Weinberg, C., V. Olzog, I. Eckert and Z. Weinberg | Identification of over 200-fold more hairpin ribozymes than previously known in diverse circular RNAs. | Hairpin ribozyme | Expand the number of natural hairpin ribozymes | Nucleic acids research 49(11): 6375-6388. |
2022 | Lee, B., U. Neri, C. Oh, P. Simmonds and E. Koonin | ViroidDB: a database of viroids and viroid-like circular RNAs. | Hairpin ribozyme | ViroidDB: a database of viroids and viroid-like circular RNAs | Nucleic acids research 50: D432-D438. |
2022 | Hieronymus, R., J. Zhu and S. Müller | RNA self-splicing by engineered hairpin ribozyme variants. | Hairpin ribozyme | Engineering of hairpin ribozyme variants | Nucleic acids research 50(1): 368-377. |
1994 | Pley, H. W., K. M. Flaherty and D. B. McKay | Three-dimensional structure of a hammerhead ribozyme. | Hammerhead ribozyme | Crystal structure of type III HHR | Nature 372(6501): 68-74. |
2008 | Chi, Y. I., M. Martick, M. Lares, R. Kim, W. G. Scott and S. H. Kim | Capturing hammerhead ribozyme structures in action by modulating general base catalysis. | Hammerhead ribozyme | Crystal structure | PLoS Biol 6(9): e234. |
2014 | Schultz, E. P., E. E. Vasquez and W. G. Scott | Structural and catalytic effects of an invariant purine substitution in the hammerhead ribozyme: implications for the mechanism of acid-base catalysis. | Hammerhead ribozyme | Specific base catalysis mechanism | Acta Crystallogr D Biol Crystallogr 70(Pt 9): 2256-2263. |
2006 | Martick, M. and W. G. Scott | Tertiary contacts distant from the active site prime a ribozyme for catalysis. | Hammerhead ribozyme | Crystal structure of typeⅠ HHR | Cell 126(2): 309-320. |
2013 | Anderson, M., E. P. Schultz, M. Martick and W. G. Scott | Active-site monovalent cations revealed in a 1.55-Å-resolution hammerhead ribozyme structure. | Hammerhead ribozyme | Crystal structure | J Mol Biol 425(20): 3790-3798. |
1986 | Prody, G. A., J. T. Bakos, J. M. Buzayan, I. R. Schneider and G. Bruening | Autolytic Processing of Dimeric Plant Virus Satellite RNA. | Hammerhead ribozyme | Discovery | Science 231(4745): 1577-1580. |
2015 | Weinberg, Z., P. B. Kim, T. H. Chen, S. Li, K. A. Harris, C. E. Lünse and R. R. Breaker | New classes of self-cleaving ribozymes revealed by comparative genomics analysis. | Hammerhead ribozyme | Discover variants of typeⅠHHR | Nat Chem Biol 11(8): 606-610. |
2017 | Lünse, C. E., Z. Weinberg and R. R. Breaker | Numerous small hammerhead ribozyme variants associated with Penelope-like retrotransposons cleave RNA as dimers. | Hammerhead ribozyme | Some variants form dimers to cleave RNA | RNA Biol 14(11): 1499-1507. |
2017 | Ren, A., R. Micura and D. J. Patel | Structure-based mechanistic insights into catalysis by small self-cleaving ribozymes. | Hammerhead ribozyme | Catalytic mechanism | Curr Opin Chem Biol 41: 71-83. |
2019 | Wilson, T. J., Y. Liu, N. S. Li, Q. Dai, J. A. Piccirilli and D. M. J. Lilley | Comparison of the Structures and Mechanisms of the Pistol and Hammerhead Ribozymes. | Hammerhead ribozyme | The structure is similar with the pistol ribozyme | J Am Chem Soc 141(19): 7865-7875. |
1986 | Hutchins, C. J., P. D. Rathjen, A. C. Forster and R. H. Symons | Self-cleavage of plus and minus RNA transcripts of avocado sunblotch viroid. | Hammerhead ribozyme | Discovery | Nucleic Acids Research 14(9): 3627-3640. |
1986 | Hutchins, C. J., P. D. Rathjen, A. C. Forster and R. H. Symons | Self-cleavage of plus and minus RNA transcripts of avocado sunblotch viroid. | Hammerhead ribozyme | Secondary structure of type I HHR | Nucleic Acids Research 14(9): 3627-3640. |
1987 | Forster, A. C. and R. H. Symons | Self-cleavage of plus and minus RNAs of a virusoid and a structural model for the active sites. | Hammerhead ribozyme | Secondary structure of type III HHR | Cell 49(2): 211-220. |
1991 | Pabón-Peña, L. M., Y. Zhang and L. M. Epstein | Newt satellite 2 transcripts self-cleave by using an extended hammerhead structure. | Hammerhead ribozyme | Internal loops are important | Mol Cell Biol 11(12): 6109-6115. |
1998 | Murray, J. B., A. A. Seyhan, N. G. Walter, J. M. Burke and W. G. Scott | The hammerhead, hairpin and VS ribozymes are catalytically proficient in monovalent cations alone. | Hammerhead ribozyme | Dense positive charge is critical for catalysis | Chem Biol 5(10): 587-595. |
2005 | Han, J. and J. M. Burke | Model for general acid-base catalysis by the hammerhead ribozyme: pH-activity relationships of G8 and G12 variants at the putative active site. | Hammerhead ribozyme | G8 and G12 is critical for catalysis | Biochemistry 44(21): 7864-7870. |
2005 | Han, J. and J. M. Burke | Model for general acid-base catalysis by the hammerhead ribozyme: pH-activity relationships of G8 and G12 variants at the putative active site. | Hammerhead ribozyme | Catalytic mechanism | Biochemistry 44(21): 7864-7870. |
2011 | Jimenez, R. M., E. Delwart and A. Lupták | Structure-based search reveals hammerhead ribozymes in the human microbiome. | Hammerhead ribozyme | Secondary structure of type II HHR | J Biol Chem 286(10): 7737-7743. |
2013 | Lee, T. S., K. Y. Wong, G. M. Giambasu and D. M. York | Bridging the gap between theory and experiment to derive a detailed understanding of hammerhead ribozyme catalysis. | Hammerhead ribozyme | Catalytic mechanism | Prog Mol Biol Transl Sci 120: 25-91. |
2015 | O'Rourke, S. M., W. Estell and W. G. Scott | Minimal Hammerhead Ribozymes with Uncompromised Catalytic Activity. | Hammerhead ribozyme | Trans-Hoogsteen greatly enhances the activity of the minimal hammer ribozyme |
J Mol Biol 427(14): 2340-2347. |
2017 | de la Peña, M. and A. Cervera | Circular RNAs with hammerhead ribozymes encoded in eukaryotic genomes: The enemy at home. | Hammerhead ribozyme | Found on some retrozyme sequences | RNA Biol 14(8): 985-991. |
2017 | Chen, H., T. J. Giese, B. L. Golden and D. M. York | Divalent Metal Ion Activation of a Guanine General Base in the Hammerhead Ribozyme: Insights from Molecular Simulations. | Hammerhead ribozyme | Mg2+ is critical for catalysis by activating G12 | Biochemistry 56(24): 2985-2994. |
2018 | O'Rourke, S. M. and W. G. Scott | Structural Simplicity and Mechanistic Complexity in the Hammerhead Ribozyme. | Hammerhead ribozyme | Complex mechanism of enhancing activity | Prog Mol Biol Transl Sci 159: 177-202. |
2019 | You, M., J. L. Litke, R. Wu and S. R. Jaffrey | Detection of Low-Abundance Metabolites in Live Cells Using an RNA Integrator. | Hammerhead ribozyme | Composing RNA-based biosensor | Cell Chem Biol 26(4): 471-481.e473. |
2019 | Zheng, L., C. Falschlunger, K. Huang, E. Mairhofer, S. Yuan, J. Wang, D. J. Patel, R. Micura and A. Ren | Hatchet ribozyme structure and implications for cleavage mechanism. | Hatchet ribozyme | Crystal structure and cleavage mechanism | Proc Natl Acad Sci U S A 116(22): 10783-10791. |
2020 | Micura, R. and C. Hobartner | Fundamental studies of functional nucleic acids: aptamers, riboswitches, ribozymes and DNAzymes. | Hatchet ribozyme | Review about functional nucleic acids |
Chem Soc Rev 49(20): 7331-7353. |
2015 | Weinberg, Z., P. B. Kim, T. H. Chen, S. Li, K. A. Harris, C. E. Lunse and R. R. Breaker | New classes of self-cleaving ribozymes revealed by comparative genomics analysis. | Hatchet ribozyme | Discovery, Secondary structure | Nat Chem Biol 11(8): 606-10. |
2015 | Li, S., C. E. Lunse, K. A. Harris and R. R. Breaker | Biochemical analysis of hatchet self-cleaving ribozymes. | Hatchet ribozyme | Biochemical analysis of hatchet ribozyme | RNA 21(11): 1845-51. |
2018 | Gasser, C., J. Gebetsberger, M. Gebetsberger and R. Micura | SHAPE probing pictures Mg2+-dependent folding of small self-cleaving ribozymes. | Hatchet ribozyme | SHAPE probing of pre-catalytic folds of hatchet ribozyme | Nucleic Acids Res 46(14): 6983-6995. |
1997 | Kolk, M. H. | The structure of the isolated, central hairpin of the HDV antigenomic ribozyme: novel structural features and similarity of the loop in the ribozyme and free in solution. | HDV ribozyme | NMR structure of the isolated central hairpin(Stem Loop Ⅲ) | The EMBO Journal 16(12): 3685-3692. |
1998 | Ferré-D'Amaré, A. R., K. Zhou and J. A. Doudna | Crystal structure of a hepatitis delta virus ribozyme. | HDV ribozyme | Crystal structure | Nature 395(6702): 567-574. |
2004 | Ke, A., K. Zhou, F. Ding, J. H. Cate and J. A. Doudna | A conformational switch controls hepatitis delta virus ribozyme catalysis. | HDV ribozyme | Precursor structures | Nature 429(6988): 201-205. |
2010 | Chen, J. H., R. Yajima, D. M. Chadalavada, E. Chase, P. C. Bevilacqua and B. L. Golden | A 1.9 A crystal structure of the HDV ribozyme precleavage suggests both Lewis acid and general acid mechanisms contribute to phosphodiester cleavage. | HDV ribozyme | Precleavage structures | Biochemistry 49(31): 6508-6518. |
1991 | Rosenstein, S. P. and M. D. Been | Evidence that genomic and antigenomic RNA self-cleaving elements from hepatitis delta virus have similar secondary structures. | HDV ribozyme | Pseudoknot-like secondary structure | Nucleic Acids Research 19(19): 5409-5416. |
2019 | Lilley, D. M. J. | Classification of the nucleolytic ribozymes based upon catalytic mechanism. | HDV ribozyme | Review | F1000Res 8. |
1988 | Kuo, M. Y., L. Sharmeen, G. Dinter-Gottlieb and J. Taylor | Characterization of self-cleaving RNA sequences on the genome and antigenome of human hepatitis delta virus. | HDV ribozyme | Discovery | J Virol 62(12): 4439-4444. |
1988 | Sharmeen, L., M. Y. Kuo, G. Dinter-Gottlieb and J. Taylor | Antigenomic RNA of human hepatitis delta virus can undergo self-cleavage. | HDV ribozyme | Discovery | J Virol 62(8): 2674-2679. |
1989 | Wu, H. N., Y. J. Lin, F. P. Lin, S. Makino, M. F. Chang and M. M. Lai | Human hepatitis delta virus RNA subfragments contain an autocleavage activity. | HDV ribozyme | Discovery | Proceedings of the National Academy of Sciences 86(6): 1831-1835. |
1990 | Perrotta, A. T. and M. D. Been | The self-cleaving domain from the genomic RNA of hepatitis delta virus: sequence requirements and the effects of denaturant. | HDV ribozyme | 84 nucleotides are required for rapid and efficient self-cleavage | Nucleic Acids Res 18(23): 6821-6827. |
1991 | Perrotta, A. T. and M. D. Been | A pseudoknot-like structure required for efficient self-cleavage of hepatitis delta virus RNA. | HDV ribozyme | Pseudoknot-like secondary structure | Nature 350(6317): 434-436. |
1992 | Been, M. D., A. T. Perrotta and S. P. Rosenstein | Secondary structure of the self-cleaving RNA of hepatitis delta virus: applications to catalytic RNA design. | HDV ribozyme | The P4 duplex can reduce the minimum size to about 65 nucleotides | Biochemistry 31(47): 11843-11852. |
1993 | Suh, Y. A., P. K. Kumar, K. Taira and S. Nishikawa | Self-cleavage activity of the genomic HDV ribozyme in the presence of various divalent metal ions. | HDV ribozyme | Nonspecifific divalent cations are required for self-cleavage | Nucleic Acids Res 21(14): 3277-3280. |
1996 | Ferre-D'Amare, A. R. and J. A. Doudna | Use of cis- and trans-ribozymes to remove 5' and 3' heterogeneities from milligrams of in vitro transcribed RNA. | HDV ribozyme | Use of cis-delta ribozyme generated 3′homogeneous RNA ends | Nucleic Acids Res 24(5): 977-978 |
2000 | Nakano, S., D. M. Chadalavada and P. C. Bevilacqua | General acid-base catalysis in the mechanism of a hepatitis delta virus ribozyme. | HDV ribozyme | C75 acts as the general acid and ribozyme-bound hydrated metal hydroxide as the general base | Science 287(5457): 1493-1497. |
2005 | Das, S. R. and J. A. Piccirilli | General acid catalysis by the hepatitis delta virus ribozyme. | HDV ribozyme | It is prooved that C75 acts as the general acid | Nat Chem Biol 1(1): 45-52. |
2015 | Weinberg, Z., P. B. Kim, T. H. Chen, S. Li, K. A. Harris, C. E. Lünse and R. R. Breaker | New classes of self-cleaving ribozymes revealed by comparative genomics analysis. | HDV ribozyme | The HDV ribozyme variants were discovered | Nature Chemical Biology 11(8): 606-610. |
2015 | Koo, S. C., J. Lu, N. S. Li, E. Leung, S. R. Das, M. E. Harris and J. A. Piccirilli | Transition State Features in the Hepatitis Delta Virus Ribozyme Reaction Revealed by Atomic Perturbations. | HDV ribozyme | Transition state features | J Am Chem Soc 137(28): 8973-8982. |
2016 | Lee, T. S., B. K. Radak, M. E. Harris and D. M. York | A Two-Metal-Ion-Mediated Conformational Switching Pathway for HDV Ribozyme Activation. | HDV ribozyme | Dynamic reaction mechanism model with two Mg2+ ions | ACS Catal 6(3): 1853-1869. |
2019 | Yamagami, R., M. Kayedkhordeh, D. H. Mathews and P. C. Bevilacqua | Design of highly active double-pseudoknotted ribozymes: a combined computational and experimental study. | HDV ribozyme | Double-pseudoknot HDV can self-cleavge with the same mechanism as the WT ribozyme | Nucleic Acids Res 47(1): 29-42. |
2015 | Weinberg, Z., P. B. Kim, T. H. Chen, S. Li, K. A. Harris, C. E. Lunse and R. R. Breaker | New classes of self-cleaving ribozymes revealed by comparative genomics analysis. | HDV ribozyme variants | HDV ribozyme variants in bacterial metagenomes and fungal genomes | Nat Chem Biol 11 (8): 606-10 |
2017 | Li, S. and R. R. Breaker | Identification of 15 candidate structured noncoding RNA motifs in fungi by comparative genomics. | HDV variants | More HDV ribozyme variants in fungi | BMC Genomics 18 (1): 785. |
2009 | Webb, C. H., N. J. Riccitelli, D. J. Ruminski and A. Luptak | Widespread occurrence of self-cleaving ribozymes. | HDV-like ribozymes | HDV-like ribozymes in other species | Science 326 (5955): 953. |
2011 | Webb, C. H. and A. Luptak | HDV-like self-cleaving ribozymes. | HDV-like self-cleaving ribozymes | A review of HDV-like self-cleaving ribozymes | RNA Biol 8 (5): 719-27. |
2021 | Chen, Y., F. Qi, F. Gao, H. Cao, D. Xu, K. Salehi-Ashtiani and P. Kapranov | Hovlinc is a recently evolved class of ribozyme found in human lncRNA. | Hovlinc ribozyme | Discovery of Hovlinc ribozyme and its secondary structure | Nature Chemical Biology 17 (5): 601-607. |
2011 | Sanchez-Luque, F. J., M. C. Lopez, F. Macias, C. Alonso and M. C. Thomas | Identification of an hepatitis delta virus-like ribozyme at the mRNA 5'-end of the L1Tc retrotransposon from Trypanosoma cruzi. | L1Tc ribozyme(L1TcRz) | A HDV-like ribozyme in L1Tc mRNA | Nucleic Acids Res 39 (18): 8065-77. |
2006 | Salehi-Ashtiani, K., A. Luptak, A. Litovchick and J. W. Szostak | A genomewide search for ribozymes reveals an HDV-like sequence in the human CPEB3 gene. | LINE1 ribozyme | Discovery | Science 313(5794): 1788-1792. |
2016 | Ren, A., Vusurovic, N., Gebetsberger, J., Gao, P., Juen, M., Kreutz, C., Micura, R. & Patel, D. J. | Pistol ribozyme adopts a pseudoknot fold facilitating site-specific in-line cleavage. | Pistol ribozyme | The pseudoknot fold facilitating sitespecific in-line cleavage | Nature Chemical Biology, 12, 702-8. |
2017 | Nguyen, L. A., Wang, J. & Steitz, T. A. | Crystal structure of Pistol, a class of self-cleaving ribozyme. | Pistol ribozyme | Crystal structure of Pistol shows an evolutionarily conserved cleavage mechanism that is like other self-cleaving ribozymes | Proc Natl Acad Sci U S A, 114, 1021-6. |
2019 | Wilson, T. J., Y. Liu, N. S. Li, Q. Dai, J. A. Piccirilli and D. Lilley | Comparison of the Structures and Mechanisms of the Pistol and Hammerhead Ribozymes. | Pistol ribozyme | Comparison of the Structures and Mechanisms of the Pistol and Hammerhead Ribozymes | J Am Chem Soc 141(19): 7865-7875. |
2020 | Teplova, M., Falschlunger, C., Krasheninina, O., Egger, M., Ren, A., Patel, D. J. & Micura, R. | Crucial Roles of Two Hydrated Mg2+ Ions in Reaction Catalysis of the Pistol Ribozyme. | Pistol ribozyme | Crucial Roles of Two Hydrated Mg2+ Ions in Reaction Catalysis | Angew Chem Int Ed Engl, 59, 2837-43. |
2017 | Kobori, S., K. Takahashi and Y. Yokobayashi | Deep Sequencing Analysis of Aptazyme Variants Based on a Pistol Ribozyme. | Pistol ribozyme | Deep Sequencing Analysis of Aptazyme Variants Based on Pistol Ribozyme | ACS Synth Biol 6(7): 1283-1288. |
2020 | Micura, R. and C. Hobartner | Fundamental studies of functional nucleic acids: aptamers, riboswitches, ribozymes and DNAzymes. | Pistol ribozyme | Review about functional nucleic acids | Chem Soc Rev 49(20): 7331-7353. |
2021 | Mustafina, K., Y. Nomura, R. Rotrattanadumrong and Y. Yokobayashi | Circularly-Permuted Pistol Ribozyme: A Synthetic Ribozyme Scaffold for Mammalian Riboswitches. | Pistol ribozyme | Pistol ribozyme used for Mammalian Riboswitches | ACS Synth Biol 10(8): 2040-2048. |
2015 | Weinberg, Z., Kim, P. B., Chen, T. H., Li, S., Harris, K. A., Lunse, C. E. & Breaker, R. R. | New classes of self-cleaving ribozymes revealed by comparative genomics analysis. | Pistol ribozyme | Discovery, Secondary structure | Nature Chemical Biology, 11, 606-10. |
2015 | Harris, K. A., C. E. Lunse, S. Li, K. I. Brewer and R. R. Breaker | Biochemical analysis of pistol self-cleaving ribozymes. | Pistol ribozyme | Biochemical analysis of pistol ribozyme | RNA 21(11): 1852-8. |
2017 | Neuner, S., C. Falschlunger, E. Fuchs, M. Himmelstoss, A. Ren, D. J. Patel and R. Micura | Atom-Specific Mutagenesis Reveals Structural and Catalytic Roles for an Active-Site Adenosine and Hydrated Mg(2+) in Pistol Ribozymes. | Pistol ribozyme | Structural and Catalytic Roles for an Active-Site Adenosine and Hydrated Mg(2+) in Pistol Ribozymes | Angew Chem Int Ed Engl 56(50): 15954-15958. |
2020 | Joseph, N. N., R. N. Roy and T. A. Steitz | Molecular dynamics analysis of Mg(2+) -dependent cleavage of a pistol ribozyme reveals a fail-safe secondary ion for catalysis. | Pistol ribozyme | Mg2+ -dependent cleavage of a pistol ribozyme reveals a fail-safe secondary ion for catalysis | J Comput Chem 41(14): 1345-1352. |
2021 | Lihanova, Y. and C. E. Weinberg | Biochemical analysis of cleavage and ligation activities of the pistol ribozyme from Paenibacillus polymyxa. | Pistol ribozyme | Biochemical analysis of cleavage and ligation activities of the pistol ribozyme from Paenibacillus polymyxa | RNA Biol 18(11): 1858-1866. |
2022 | Ekesan, S. and D. M. York | Who stole the proton? Suspect general base guanine found with a smoking gun in the pistol ribozyme. | Pistol ribozyme | new classical and combined quantum mechanical/molecular mechanical simulation of pistol ribozyme | Org Biomol Chem. |
2010 | Eickbush, D. G. and T. H. Eickbush | R2 retrotransposons encode a self-cleaving ribozyme for processing from an rRNA cotranscript. | R2 ribozyme | A HDV-like ribozyme encoded by R2 retrotransposons | Mol Cell Biol 30 (13): 3142-50. |
2011 | Ruminski, D. J., C. T. Webb, N. J. Riccitelli and A. Luptak | Processing and translation initiation of non-long terminal repeat retrotransposons by hepatitis delta virus (HDV)-like self-cleaving ribozymes. | RT-associated ribozymes | More retrotransposons encode HDV-like ribozymes | J Biol Chem 286 (48): 41286-41295. |
2014 | Liu, Y., T. J. Wilson, S. A. McPhee and D. M. Lilley | Crystal structure and mechanistic investigation of the twister ribozyme. | twister ribozyme | Crystal structure of P1-type | Nat Chem Biol 10(9): 739-44. |
2014 | Eiler, D., J. Wang and T. A. Steitz | Structural basis for the fast self-cleavage reaction catalyzed by the twister ribozyme. | twister ribozyme | Crystal structure of P3-type | Proc Natl Acad Sci U S A 111(36): 13028-33. |
2014 | Ren, A., M. Kosutic, K. R. Rajashankar, M. Frener, T. Santner, E. Westhof, R. Micura and D. J. Patel | In-line alignment and Mg(2)(+) coordination at the cleavage site of the env22 twister ribozyme. | twister ribozyme | Crystal structure of P1-type | Nat Commun 5: 5534. |
2015 | Kosutic, M., S. Neuner, A. Ren, S. Flur, C. Wunderlich, E. Mairhofer, N. Vusurovic, J. Seikowski, K. Breuker, C. Hobartner, D. J. Patel, C. Kreutz and R. Micura | A Mini-Twister Variant and Impact of Residues/Cations on the Phosphodiester Cleavage of this Ribozyme Class. | twister ribozyme | Catalytic mechanism of Mini-Twister Variant | Angew Chem Int Ed Engl 54(50): 15128-15133. |
2016 | Wilson, T. J., Y. Liu, C. Domnick, S. Kath-Schorr and D. M. Lilley | The Novel Chemical Mechanism of the Twister Ribozyme. | twister ribozyme | Novel chemical Mechanism | J Am Chem Soc 138(19): 6151-62. |
2016 | Kobori, S. and Y. Yokobayashi | High-Throughput Mutational Analysis of a Twister Ribozyme. | twister ribozyme | High-Throughput Mutational Analysis of a Twister Ribozyme | Angew Chem Int Ed Engl 55(35): 10354-7. |
2017 | Vusurovic, N., Altman, R. B., Terry, D. S., Micura, R. & Blanchard, S. C. | Pseudoknot Formation Seeds the Twister Ribozyme Cleavage Reaction Coordinate. | twister ribozyme | The role of pseudokno | J Am Chem Soc 139 (24): 8186-8193. |
2017 | Panja, S., B. Hua, D. Zegarra, T. Ha and S. A. Woodson | Metals induce transient folding and activation of the twister ribozyme. | twister ribozyme | Metals induce transient folding and activation of the twister ribozyme | Nat Chem Biol 13(10): 1109-1114. |
2018 | Messina, K. J. and P. C. Bevilacqua | Cellular Small Molecules Contribute to Twister Ribozyme Catalysis. | twister ribozyme | Cellular Small Molecules Contribute to Twister Ribozyme Catalysis | J Am Chem Soc 140(33): 10578-10582. |
2019 | Gaines, C. S., T. J. Giese and D. M. York | Cleaning Up Mechanistic Debris Generated by Twister Ribozymes Using Computational RNA Enzymology. | twister ribozyme | Cleaning Up Mechanistic Debris Generated by Twister Ribozymes Using Computational RNA Enzymology | ACS Catal 9(7): 5803-5815. |
2019 | Lilley, D. | Classification of the nucleolytic ribozymes based upon catalytic mechanism. | twister ribozyme | Classification of the nucleolytic ribozymes based upon catalytic mechanism | F1000Res 8. |
2019 | Litke, J. L. and S. R. Jaffrey | Highly efficient expression of circular RNA aptamers in cells using autocatalytic transcripts. | twister ribozyme | Application for highly efficient express circular RNA aptamers | Nat Biotechnol 37(6): 667-675. |
2020 | Korman, A., H. Sun, B. Hua, H. Yang, J. N. Capilato, R. Paul, S. Panja, T. Ha, M. M. Greenberg and S. A. Woodson | Light-controlled twister ribozyme with single-molecule detection resolves RNA function in time and space. | twister ribozyme | Application for RNA function detection | Proc Natl Acad Sci U S A 117(22): 12080-12086. |
2014 | Roth, A., Z. Weinberg, A. G. Chen, P. B. Kim, T. D. Ames and R. R. Breaker | A widespread self-cleaving ribozyme class is revealed by bioinformatics. | twister ribozyme | Discovery, Secondary structure | Nat Chem Biol 10(1): 56-60. |
2016 | Felletti, M., J. Stifel, L. A. Wurmthaler, S. Geiger and J. S. Hartig | Twister ribozymes as highly versatile expression platforms for artificial riboswitches. | twister ribozyme | Application:Twister ribozymes as highly versatile expression platforms for artificial riboswitches | Nat Commun 7: 12834. |
2016 | Gaines, C. S. and D. M. York | Ribozyme Catalysis with a Twist: Active State of the Twister Ribozyme in Solution Predicted from Molecular Simulation. | twister ribozyme | Active State of the Twister Ribozyme in Solution Predicted from Molecular Simulation | J Am Chem Soc 138(9): 3058-65. |
2017 | Gebetsberger, J. & Micura, R. | Unwinding the twister ribozyme: from structure to mechanism. | twister ribozyme | Chemical Mechanism | Wiley Interdiscip Rev RNA 8 (3). |
2017 | Breaker, R. R. | Mechanistic Debris Generated by Twister Ribozymes. | twister ribozyme | Mechanistic Debris Generated by Twister Ribozymes | ACS Chem Biol 12(4): 886-891. |
2021 | Liu, G., H. Jiang, W. Sun, J. Zhang, D. Chen and A. Murchie | The function of twister ribozyme variants in non-LTR retrotransposition in Schistosoma mansoni. | twister ribozyme | The function of twister ribozyme variants in non-LTR retrotransposition | Nucleic Acids Res 49(18): 10573-10588. |
2017 | Liu, Y., T. J. Wilson and D. Lilley | The structure of a nucleolytic ribozyme that employs a catalytic metal ion. | twister-sister ribozyme | Three-way junctional pre-catalytic structure | Nat Chem Biol 13(5): 508-513. |
2017 | Zheng, L., E. Mairhofer, M. Teplova, Y. Zhang, J. Ma, D. J. Patel, R. Micura and A. Ren | Structure-based insights into self-cleavage by a four-way junctional twister-sister ribozyme. | twister-sister ribozyme | Four-way junctional pre-catalytic structure | Nat Commun 8(1): 1180. |
2017 | Gaines, C. S. and D. M. York | Model for the Functional Active State of the TS Ribozyme from Molecular Simulation. | twister-sister ribozyme | Model for the Functional Active State of the TS Ribozyme | Angew Chem Int Ed Engl 56(43): 13392-13395. |
2019 | Lilley, D. | Classification of the nucleolytic ribozymes based upon catalytic mechanism. | twister-sister ribozyme | Classification of the nucleolytic ribozymes based upon catalytic mechanism | F1000Res 8. |
2019 | You, M., J. L. Litke, R. Wu and S. R. Jaffrey | Detection of Low-Abundance Metabolites in Live Cells Using an RNA Integrator. | twister-sister ribozyme | Application:twister sister ribozyme is used to detect Low-Abundance Mrtabolites | Cell Chem Biol 26(4): 471-481.e3. |
2020 | Micura, R. and C. Hobartner | Fundamental studies of functional nucleic acids: aptamers, riboswitches, ribozymes and DNAzymes. | twister-sister ribozyme | Review about functional nucleic acids |
Chem Soc Rev 49(20): 7331-7353. |
2015 | Weinberg, Z., P. B. Kim, T. H. Chen, S. Li, K. A. Harris, C. E. Lunse and R. R. Breaker | New classes of self-cleaving ribozymes revealed by comparative genomics analysis. | twister-sister ribozyme | Discovery, Secondary structure | Nat Chem Biol 11(8): 606-10. |
2017 | Ren, A., R. Micura and D. J. Patel | Structure-based mechanistic insights into catalysis by small self-cleaving ribozymes. | twister-sister ribozyme | Structure-based mechanistic | Curr Opin Chem Biol 41: 71-83. |
2008 | Kolev, N. G., E. I. Hartland and P. W. Huber | A manganese-dependent ribozyme in the 3'-untranslated region of Xenopus Vg1 mRNA. | Vg1 ribozyme | Discovery that manganese-dependent ribozyme occurs naturally in the 3'-UTR of Vg1 and beta-actin mRNAs | Nucleic Acids Res 36(17): 5530-5539. |
1990 | Saville, B. J. and R. A. Collins | A site-specific self-cleavage reaction performed by a novel RNA in neurospora mitochondria. | VS ribozyme | discovery | Cell 61(4): 685-696. |
1995 | Beattie, T. L., J. E. Olive and R. A. Collins | A secondary-structure model for the self-cleaving region of Neurospora VS RNA. | VS ribozyme | secondary structure | Proc Natl Acad Sci U S A 92(10): 4686-4690. |
2001 | D.A. Lafontaine, D.G. Norman and D.M.J. Lilley | Structure, folding and activity of the VS ribozyme : Importance of the 2-3-6 helical junction | VS ribozyme | Importance of the 2-3-6 helical junction | EMBO J. 20 1415-1424 |
2001 | Lafontaine, D. A., T. J. Wilson, D. G. Norman and D. M. Lilley | The A730 loop is an important component of the active site of the VS ribozyme. | VS ribozyme | A730 loop is important | J Mol Biol 312(4): 663-674. |
2001 | Flinders, J. and T. Dieckmann | A pH controlled conformational switch in the cleavage site of the VS ribozyme substrate RNA. | VS ribozyme | NMR structure of the isolated substrate helix | J Mol Biol 308(4): 665-679. |
2002 | D.A. Lafontaine, D.G. Norman and D. M.J. Lilley | The global structure of the VS ribozyme. | VS ribozyme | The global structure of the VS ribozyme | EMBO J. 21, 2461-2471 |
2002 | Lafontaine, D. A., T. J. Wilson, Z.-Y. Zhao and D. M. J. Lilley | Functional Group Requirements in the Probable Active Site of the VS Ribozyme. | VS ribozyme | A756 is critical for catalysis | Journal of Molecular Biology 323(1): 23-34. |
2005 | Campbell, D. O. and P. Legault | Nuclear magnetic resonance structure of the Varkud satellite ribozyme stem-loop V RNA and magnesium-ion binding from chemical-shift mapping. | VS ribozyme | NMR structure of SL5 | Biochemistry 44(11): 4157-4170. |
2007 | Wilson, T. J., A. C. McLeod and D. M. Lilley | A guanine nucleobase important for catalysis by the VS ribozyme. | VS ribozyme | G638 is critical for catalysis | EMBO J 26(10): 2489-2500. |
2008 | Lipfert, J., J. Ouellet, D. G. Norman, S. Doniach and D. M. Lilley | The complete VS ribozyme in solution studied by small-angle X-ray scattering. | VS ribozyme | SAXS-deriverd structure | Structure 16(9): 1357-1367. |
2009 | J. Ouellet, M. Byrne and D. M. J. Lilley | Formation of an active site in trans by interaction of two complete Varkud Satellite ribozymes | VS ribozyme | The soixante-neuf experiment | RNA 15, 1822-1826 |
2010 | Wilson, T. J., N. S. Li, J. Lu, J. K. Frederiksen, J. A. Piccirilli and D. M. Lilley | Nucleobase-mediated general acid-base catalysis in the Varkud satellite ribozyme. | VS ribozyme | catalytic mechanism | Proc Natl Acad Sci U S A 107(26): 11751-11756. |
2011 | T. J. Wilson and D. M. J. Lilley. | Do the hairpin and VS ribozymes share a common catalytic mechanism based on general acid-base catalysis ? A critical assessment of available experimental data. | VS ribozyme | Detailed discussion of the chemical mechanism | RNA 17, 213-221 |
2011 | Desjardins, G., E. Bonneau, N. Girard, J. Boisbouvier and P. Legault | NMR structure of the A730 loop of the Neurospora VS ribozyme: insights into the formation of the active site. | VS ribozyme | NMR structure of A730 loop | Nucleic Acids Res 39(10): 4427-4437. |
2014 | Bonneau, E. and P. Legault | Nuclear magnetic resonance structure of the III-IV-V three-way junction from the Varkud satellite ribozyme and identification of magnesium-binding sites using paramagnetic relaxation enhancement. | VS ribozyme | NMR structure of the III-IV-V three-way junction | Biochemistry 53(39): 6264-6275. |
2015 | Bonneau, E., N. Girard, S. Lemieux and P. Legault | The NMR structure of the II-III-VI three-way junction from the Neurospora VS ribozyme reveals a critical tertiary interaction and provides new insights into the global ribozyme structure. | VS ribozyme | NMR structure of the II-III-VI three-way junction | RNA 21(9): 1621-1632. |
2015 | Suslov, N. B., S. DasGupta, H. Huang, J. R. Fuller, D. M. Lilley, P. A. Rice and J. A. Piccirilli | Crystal structure of the Varkud satellite ribozyme. | VS ribozyme | Crystal structure | Nat Chem Biol 11(11): 840-846. |
2017 | DasGupta, S., N. B. Suslov and J. A. Piccirilli | Structural Basis for Substrate Helix Remodeling and Cleavage Loop Activation in the Varkud Satellite Ribozyme. | VS ribozyme | Crystal structure | J Am Chem Soc 139(28): 9591-9597. |
2020 | Ganguly, A., B. P. Weissman, T. J. Giese, N. S. Li, S. Hoshika, S. Rao, S. A. Benner, J. A. Piccirilli and D. M. York | Confluence of theory and experiment reveals the catalytic mechanism of the Varkud satellite ribozyme. | VS ribozyme | Additional experiments to summarize the structure and function of VS ribozyme | Nat Chem 12(2): 193-201. |
1977 | Chow, L. T., R. E. Gelinas, T. R. Broker and R. J. Roberts | An amazing sequence arrangement at the 5′ ends of adenovirus 2 messenger RNA. | Spliceosome | Splicing phenomenon found | Cell 12(1): 1-8. |
1983 | Mount, S. M., I. Pettersson, M. Hinterberger, A. Karmas and J. A. Steitz | The U1 small nuclear RNA-protein complex selectively binds a 5' splice site in vitro. | Spliceosome | First isolation of spliceosome subunits | Cell 33(2): 509-518. |
1985 | Frendewey, D. and W. Keller | Stepwise assembly of a pre-mRNA splicing complex requires U-snRNPs and specific intron sequences. | Spliceosome | In vitro splicing experiment | Cell 42(1): 355-367. |
1985 | Grabowski, P., S. Seiler and P. Sharp | A multicomponent complex is involved in the splicing of messenger RNA precursors. | Spliceosome | In vitro splicing experiment | Cell 42(1): 345-353. |
1992 | Madhani, H. D. and C. Guthrie | A novel base-pairing interaction between U2 and U6 snRNAs suggests a mechanism for the catalytic activation of the spliceosome. | Spliceosome | Demonstrate a conserved base-pairing interaction between the U6 and U2 snRNAs that is mutually exclusive with the U4-U6 interaction | Cell 71(5): 803-817. |
1993 | Steitz, T. A. and J. A. Steitz | A general two-metal-ion mechanism for catalytic RNA. | Spliceosome | Proposed that the two phosphotransesterifications of splicing are catalyzed by a two-metal mechanism | Proc Natl Acad Sci U S A 90(14): 6498-6502. |
1997 | Sontheimer, E. J., S. Sun and J. A. Piccirilli | Metal ion catalysis during splicing of premessenger RNA. | Spliceosome | Divalent metals stabilize the leaving group during each step of splicing | Nature 388(6644): 801-805. |
2000 | Yean, S. L., G. Wuenschell, J. Termini and R. J. Lin | Metal-ion coordination by U6 small nuclear RNA contributes to catalysis in the spliceosome. | Spliceosome | Metal-ion coordination by U6 small nuclear RNA contributes to catalysis in the spliceosome | Nature 408(6814): 881-884. |
2001 | Valadkhan, S. and J. L. Manley | Splicing-related catalysis by protein-free snRNAs. | Spliceosome | U2 and U6 can base-pair and fold in vitro into a structure that catalyzes reactions similar to the two steps of pre-mRNA splicing | Nature 413(6857): 701-707. |
2009 | Mefford, M. A. and J. P. Staley | Evidence that U2/U6 helix I promotes both catalytic steps of pre-mRNA splicing and rearranges in between these steps. | Spliceosome | U2/U6 helix I promotes both catalytic steps of pre-mRNA splicing and rearranges in between these steps | RNA 15(7): 1386-1397. |
2013 | Galej, W. P., C. Oubridge, A. J. Newman and K. Nagai | Crystal structure of Prp8 reveals active site cavity of the spliceosome. | Spliceosome | provides crucial insights into the architecture of the spliceosome active site, and reinforces the notion that nuclear pre-mRNA splicing and group II intron splicing have a common origin. | Nature 493(7434): 638-643. |
2013 | Fica, S. M., N. Tuttle, T. Novak, N. S. Li, J. Lu, P. Koodathingal, Q. Dai, J. P. Staley and J. A. Piccirilli | RNA catalyses nuclear pre-mRNA splicing. | Spliceosome | Demonstrate that RNA mediates catalysis within the spliceosome. | Nature 503(7475): 229-234. |
2015 | Yan, C., J. Hang, R. Wan, M. Huang, C. C. Wong and Y. Shi | Structure of a yeast spliceosome at 3.6-angstrom resolution. | Spliceosome | S.p ILS, 3.6 Å The first atomic structure of the intact spliceosome |
Science 349(6253): 1182-1191. |
2016 | Galej, W. P., M. E. Wilkinson, S. M. Fica, C. Oubridge, A. J. Newman and K. Nagai | Cryo-EM structure of the spliceosome immediately after branching. | Spliceosome | The resolution of tri-snRNP, a complex during splice assembly, was increased to 5.9 angstroms | Nature 537(7619): 197-201. |
2016 | Wan, R., C. Yan, R. Bai, G. Huang and Y. Shi | Structure of a yeast catalytic step I spliceosome at 3.4 A resolution. | Spliceosome | S.c C, 3.4 Å Active site after branching |
Science 353(6302): 895-904. |
2016 | Wan, R., C. Yan, R. Bai, L. Wang, M. Huang, C. C. Wong and Y. Shi | The 3.8 A structure of the U4/U6.U5 tri-snRNP: Insights into spliceosome assembly and catalysis. | Spliceosome | U4/U6.U5 tri-snRNP,3.8Å | Science 351(6272): 466-475. |
2016 | Yan, C., R. Wan, R. Bai, G. Huang and Y. Shi | Structure of a yeast activated spliceosome at 3.5 A resolution. | Spliceosome | B act , 3.5 Å Catalytic center is formed |
Science 353(6302): 904-911. |
2017 | Yan, C., R. Wan, R. Bai, G. Huang and Y. Shi | Structure of a yeast step II catalytically activated spliceosome. | Spliceosome | S.c C*, 4.0 Å | Science 355(6321): 149-155. |
2017 | Fica, S. M., C. Oubridge, W. P. Galej, M. E. Wilkinson, X. C. Bai, A. J. Newman and K. Nagai | Structure of a spliceosome remodelled for exon ligation. | Spliceosome | S.c C*, 3.8 Å | Nature 542(7641): 377-380. |
2017 | Plaschka, C., P. C. Lin and K. Nagai | Structure of a pre-catalytic spliceosome. | Spliceosome | S.c B, 7.2 (3.7) Å |
Nature 546(7660): 617-621. |
2017 | Wan, R., C. Yan, R. Bai, J. Lei and Y. Shi | Structure of an Intron Lariat Spliceosome from Saccharomyces cerevisiae. | Spliceosome | S.c ILS, 3.5 Å | Cell 171(1): 120-132 e112. |
2017 | Liu, S., X. Li, L. Zhang, J. Jiang, R. C. Hill, Y. Cui, K. C. Hansen, Z. H. Zhou and R. Zhao | Structure of the yeast spliceosomal postcatalytic P complex. | Spliceosome | S.c P, 3.3 Å | Science 358(6368): 1278-1283. |
2017 | Bai, R., C. Yan, R. Wan, J. Lei and Y. Shi | Structure of the Post-catalytic Spliceosome from Saccharomyces cerevisiae. | Spliceosome | S.c P, 3.6 Å | Cell 171(7): 1589-1598 e1588. |
2017 | Bertram, K., D. E. Agafonov, O. Dybkov, D. Haselbach, M. N. Leelaram, C. L. Will, H. Urlaub, B. Kastner, R. Luhrmann and H. Stark | Cryo-EM Structure of a Pre-catalytic Human Spliceosome Primed for Activation. | Spliceosome | C*, 5.9 Å |
Cell 170(4): 701-713 e711. |
2017 | Zhang, X., C. Yan, J. Hang, L. I. Finci, J. Lei and Y. Shi | An Atomic Structure of the Human Spliceosome. | Spliceosome | C*, 3.8 Å The first atomic model of human spliceosom |
Cell 169(5): 918-929 e914. |
2017 | Bertram, K., D. E. Agafonov, W. T. Liu, O. Dybkov, C. L. Will, K. Hartmuth, H. Urlaub, B. Kastner, H. Stark and R. Luhrmann | Cryo-EM structure of a human spliceosome activated for step 2 of splicing. | Spliceosome | B, 9.9 (4.5) Å |
Nature 542(7641): 318-323. |
2018 | Bai, R., R. Wan, C. Yan, J. Lei and Y. Shi | Structures of the fully assembled Saccharomyces cerevisiae spliceosome before activation. | Spliceosome | S.c pre–B, 3.3–4.6 Å S.c B, 3.9 Å |
Science 360(6396): 1423-1429. |
2018 | Plaschka, C., P. C. Lin, C. Charenton and K. Nagai | Prespliceosome structure provides insights into spliceosome assembly and regulation. | Spliceosome | S.c A, 4.9 (4.0) Å | Nature 559(7714): 419-422. |
2018 | Zhan, X., C. Yan, X. Zhang, J. Lei and Y. Shi | Structure of a human catalytic step I spliceosome. | Spliceosome | C, 4.1 Å |
Science 359(6375): 537-545. |
2018 | Haselbach, D., I. Komarov, D. E. Agafonov, K. Hartmuth, B. Graf, O. Dybkov, H. Urlaub, B. Kastner, R. Luhrmann and H. Stark | Structure and Conformational Dynamics of the Human Spliceosomal B(act) Complex. | Spliceosome | Bact , 3.4 Å (core) |
Cell 172(3): 454-464 e411. |
2018 | Zhan, X., C. Yan, X. Zhang, J. Lei and Y. Shi | Structures of the human pre-catalytic spliceosome and its precursor spliceosome. | Spliceosome | pre–B (5.7 Å) and B (3.8 Å) | Cell Res 28(12): 1129-1140. |
2019 | Wan, R., R. Bai, C. Yan, J. Lei and Y. Shi | Structures of the Catalytically Activated Yeast Spliceosome Reveal the Mechanism of Branching. | Spliceosome | S.c B*, 2.9–3.8 Å Four distinct structures on two different substrates |
Cell 177(2): 339-351 e313. |
2019 | Fica, S. M., C. Oubridge, M. E. Wilkinson, A. J. Newman and K. Nagai | A human postcatalytic spliceosome structure reveals essential roles of metazoan factors for exon ligation. | Spliceosome | P, 3.3 Å |
Science 363(6428): 710-714. |
2019 | Zhang, X., X. Zhan, C. Yan, W. Zhang, D. Liu, J. Lei and Y. Shi | Structures of the human spliceosomes before and after release of the ligated exon. | Spliceosome | P (3.0 Å) and ILS (2.9 Å) |
Cell Res 29(4): 274-285. |
2019 | Charenton, C., M. E. Wilkinson and K. Nagai | Mechanism of 5' splice site transfer for human spliceosome activation. | Spliceosome | pre–B, 3.3 Å Mechanism of 5' splice site transfer for human spliceosome activation |
Science 364(6438): 362-367. |
2019 | Wan, R., R. Bai, C. Yan, J. Lei and Y. Shi | Structures of the Catalytically Activated Yeast Spliceosome Reveal the Mechanism of Branching. | Spliceosome | Mechanism of Branching | Cell 177(2): 339-351 e313. |
2020 | Zhang, Z., C. L. Will, K. Bertram, O. Dybkov, K. Hartmuth, D. E. Agafonov, R. Hofele, H. Urlaub, B. Kastner, R. Luhrmann and H. Stark | Molecular architecture of the human 17S U2 snRNP. | Spliceosome | The structure of 17s U2 snRNP was analyzed and a complete molecular model of 17s U2 snRNP was obtained | Nature 583(7815): 310-313. |
2020 | Townsend, C., M. N. Leelaram, D. E. Agafonov, O. Dybkov, C. L. Will, K. Bertram, H. Urlaub, B. Kastner, H. Stark and R. Luhrmann | Mechanism of protein-guided folding of the active site U2/U6 RNA during spliceosome activation. | Spliceosome | Mechanism of protein-guided folding of the active site U2/U6 RNA during spliceosome activation | Science 370(6523). |
2021 | Bai, R., R. Wan, C. Yan, Q. Jia, J. Lei and Y. Shi | Mechanism of spliceosome remodeling by the ATPase/helicase Prp2 and its coactivator Spp2. | Spliceosome | Mechanism of spliceosome remodeling by the ATPase/helicase Prp2 and its coactivator Spp2 | Science 371(6525). |
2022 | Tholen, J., M. Razew, F. Weis and W. P. Galej | Structural basis of branch site recognition by the human spliceosome. | Spliceosome | A series of high-resolution (2.0-2.2 Å) U2 snRNP structures were identified | Science 375(6576): 50-57. |
2019 | Yan, C., R. Wan and Y. Shi | Molecular Mechanisms of pre-mRNA Splicing through Structural Biology of the Spliceosome. | Spliceosome | Review | Cold Spring Harb Perspect Biol 11(1). |
2020 | Wan, R., R. Bai, X. Zhan and Y. Shi | How Is Precursor Messenger RNA Spliced by the Spliceosome? | Spliceosome | Review | Annu Rev Biochem 89: 333-358. |
2020 | Wilkinson, M. E., C. Charenton and K. Nagai | RNA Splicing by the Spliceosome. | Spliceosome | Review | Annu Rev Biochem 89: 359-388. |
1975 | Fox, G. E. and C. R. Woese | 5S RNA secondary structure. | Ribosome | Secondary structure of 5S RNA | Nature 256(5517): 505-7. |
1980 | Woese, C. R., L. J. Magrum, R. Gupta, R. B. Siegel, D. A. Stahl, J. Kop, N. Crawford, J. Brosius, R. Gutell, J. J. Hogan and H. F. Noller | Secondary structure model for bacterial 16S ribosomal RNA: phylogenetic, enzymatic and chemical evidence. | Ribosome | A secondary structure model of bacterial 16S rRNA | Nucleic Acids Res 8 (10): 2275-93. |
1981 | Noller, H. F., J. Kop, V. Wheaton, J. Brosius, R. R. Gutell, A. M. Kopylov, F. Dohme, W. Herr, D. A. Stahl, R. Gupta and C. R. Waese | Secondary structure model for 23S ribosomal RNA. | Ribosome | Construction of 23S ribosomal RNA secondary structure model by comparing sequences | Nucleic Acids Res 9 (22): 6167-89. |
1991 | von Bohlen, K., I. Makowski, H. A. Hansen, H. Bartels, Z. Berkovitch-Yellin, A. Zaytzev-Bashan, S. Meyer, C. Paulke, F. Franceschi and A. Yonath | Characterization and preliminary attempts for derivatization of crystals of large ribosomal subunits from Haloarcula marismortui diffracting to 3 A resolution. | Ribosome | Preliminary analysis of the structure of the H. marismortui ribosomal 50 S subunit | J Mol Biol 222 (1): 11-5. |
1993 | Szewczak, A. A., P. B. Moore, Y. L. Chang and I. G. Wool | The conformation of the sarcin/ricin loop from 28S ribosomal RNA. | Ribosome | NMR structure of sarcin/ricin loop in 28s rRNA | Proc Natl Acad Sci U S A 90 (20): 9581-5. |
1995 | Samaha, R. R., R. Green and H. F. Noller | A base pair between tRNA and 23S rRNA in the peptidyl transferase centre of the ribosome. | Ribosome | G2252 and G2251 of the 23S rRNA P-loop are important | Nature 377 (6547): 309-14. |
1995 | Frank, J., J. Zhu, P. Penczek, Y. Li, S. Srivastava, A. Verschoor, M. Radermacher, R. Grassucci, R. K. Lata and R. K. Agrawal | A model of protein synthesis based on cryo-electron microscopy of the E. coli ribosome. | Ribosome | CryoEM structure of E. coli ribosomes (25 Å) | Nature 376 (6539): 441-4. |
1998 | Ban, N., B. Freeborn, P. Nissen, P. Penczek, R. A. Grassucci, R. Sweet, J. Frank, P. B. Moore and T. A. Steitz | A 9 A resolution X-ray crystallographic map of the large ribosomal subunit. | Ribosome | 9 Å resolution electron density map of the H. marismortui ribosome 50S subunit | Cell 93 (7): 1105-15. |
1999 | Kim, D. F. and R. Green | Base-pairing between 23S rRNA and tRNA in the ribosomal A site. | Ribosome | G2553 is important | Mol Cell 4(5): 859-64. |
1999 | Clemons, W. J., J. L. May, B. T. Wimberly, J. P. McCutcheon, M. S. Capel and V. Ramakrishnan | Structure of a bacterial 30S ribosomal subunit at 5.5 A resolution. | Ribosome | Structure of the ribosomal 30S subunit of T.thermophilus (5.5 Å) | Nature 400 (6747): 833-40. |
1999 | Tocilj, A., F. Schlunzen, D. Janell, M. Gluhmann, H. A. Hansen, J. Harms, A. Bashan, H. Bartels, I. Agmon, F. Franceschi and A. Yonath | The small ribosomal subunit from Thermus thermophilus at 4.5 A resolution: pattern fittings and the identification of a functional site. | Ribosome | Structure of the ribosomal 30S subunit of T.thermophilus (4.5 Å) | Proc Natl Acad Sci U S A 96 (25): 14252-7. |
1999 | Cate, J. H., M. M. Yusupov, G. Z. Yusupova, T. N. Earnest and H. F. Noller | X-ray crystal structures of 70S ribosome functional complexes. | Ribosome | Crystal structures of the 70S ribosome functional complex (7.8 Å) | Science 285 (5436): 2095-104. |
2000 | Ban, N., P. Nissen, J. Hansen, P. B. Moore and T. A. Steitz | The complete atomic structure of the large ribosomal subunit at 2.4 A resolution. | Ribosome | Crystal structure of the large ribosomal subunit of H. marismortui (2.4 Å) | Science 289 (5481): 905-20 |
2000 | Nissen, P., J. Hansen, N. Ban, P. B. Moore and T. A. Steitz | The structural basis of ribosome activity in peptide bond synthesis. | Ribosome | The ribosome is a ribozyme | Science 289 (5481): 920-30. |
2000 | Cech, T. R. | Structural biology. The ribosome is a ribozyme. | Ribosome | The ribosome is a ribozyme | Science 289(5481): 878-9. |
2000 | Muth, G. W., L. Ortoleva-Donnelly and S. A. Strobel | A single adenosine with a neutral pKa in the ribosomal peptidyl transferase center. | Ribosome | Results are consistent with a mechanism wherein the nucleotide base of A2451 serves as a general acid base during peptide bond formation | Science 289 (5481): 947-50. |
2000 | Schluenzen, F., A. Tocilj, R. Zarivach, J. Harms, M. Gluehmann, D. Janell, A. Bashan, H. Bartels, I. Agmon, F. Franceschi and A. Yonath | Structure of functionally activated small ribosomal subunit at 3.3 angstroms resolution. | Ribosome | Structure of the functionally activated small ribosomal subunit of Thermus thermophilus (3.3Å) | Cell 102 (5): 615-23. |
2000 | Wimberly, B. T., D. E. Brodersen, W. M. Clemons, Jr., R. J. Morgan-Warren, A. P. Carter, C. Vonrhein, T. Hartsch and V. Ramakrishnan | Structure of the 30S ribosomal subunit. | Ribosome | Crystal structure of the 30S subunit of Thermus thermophilus (3 Å) | Nature 407(6802): 327-339. |
2001 | Yusupov, M. M., G. Z. Yusupova, A. Baucom, K. Lieberman, T. N. Earnest, J. H. Cate and H. F. Noller | Crystal structure of the ribosome at 5.5 A resolution. | Ribosome | Crystal structure of the complete 70S ribosome of Thermus thermophilus (5.5 Å) | Science 292 (5518): 883-96. |
2003 | Bashan, A., I. Agmon, R. Zarivach, F. Schluenzen, J. Harms, R. Berisio, H. Bartels, F. Franceschi, T. Auerbach, H. A. Hansen, E. Kossoy, M. Kessler and A. Yonath | Structural basis of the ribosomal machinery for peptide bond formation, translocation, and nascent chain progression. | Ribosome | A2602, U2585 are important | Mol Cell 11 (1): 91-102. |
2005 | Schuwirth, B. S., M. A. Borovinskaya, C. W. Hau, W. Zhang, A. Vila-Sanjurjo, J. M. Holton and J. H. Cate | Structures of the bacterial ribosome at 3.5 A resolution. | Ribosome | Structure of the 70s ribosome of E. coli (3.5Å) | Science 310 (5749): 827-34. |
2011 | Rabl, J., M. Leibundgut, S. F. Ataide, A. Haag and N. Ban | Crystal structure of the eukaryotic 40S ribosomal subunit in complex with initiation factor 1. | Ribosome | Crystal structure of the 40S ribosomal subunit of Tetrahymena thermophila in complex with eIF1 (3.9 Å) | Science 331 (6018): 730-6. |
2011 | Klinge, S., F. Voigts-Hoffmann, M. Leibundgut, S. Arpagaus and N. Ban | Crystal structure of the eukaryotic 60S ribosomal subunit in complex with initiation factor 6. | Ribosome | Crystal structure of the 60S ribosomal subunit of Tetrahymena thermophila in complex with eIF6 (3.5 Å) | Science 334 (6058): 941-8. |
2011 | Ben-Shem, A., D. L. N. Garreau, S. Melnikov, L. Jenner, G. Yusupova and M. Yusupov | The structure of the eukaryotic ribosome at 3.0 A resolution. | Ribosome | Crystal structure of the yeast 80S ribosome (3.0 Å) | Science 334 (6062): 1524-9. |
2013 | Hashem, Y., A. des Georges, J. Fu, S. N. Buss, F. Jossinet, A. Jobe, Q. Zhang, H. Y. Liao, R. A. Grassucci, C. Bajaj, E. Westhof, S. Madison-Antenucci and J. Frank | High-resolution cryo-electron microscopy structure of the Trypanosoma brucei ribosome. | Ribosome | High-resolution Cryo EM structure of the Trypanosoma brucei ribosome | Nature 494 (7437): 385-9. |
2014 | Wong, W., X. C. Bai, A. Brown, I. S. Fernandez, E. Hanssen, M. Condron, Y. H. Tan, J. Baum and S. H. Scheres | Cryo-EM structure of the Plasmodium falciparum 80S ribosome bound to the anti-protozoan drug emetine. | Ribosome | Cryo-EM structure of the 80S ribosome of Plasmodium falciparum (3.2 Å) | Elife 3. |
2014 | Amunts, A., A. Brown, X. C. Bai, J. L. Llacer, T. Hussain, P. Emsley, F. Long, G. Murshudov, S. Scheres and V. Ramakrishnan | Structure of the yeast mitochondrial large ribosomal subunit. | Ribosome | Structure of the yeast mitochondrial large ribosomal subunit (3.2 Å) | Science 343 (6178): 1485-1489. |
2015 | Khatter, H., A. G. Myasnikov, S. K. Natchiar and B. P. Klaholz | Structure of the human 80S ribosome. | Ribosome | Structure of the human 80S ribosome (3.6 Å) | Nature 520 (7549): 640-5. |
2015 | Behrmann, E., J. Loerke, T. V. Budkevich, K. Yamamoto, A. Schmidt, P. A. Penczek, M. R. Vos, J. Burger, T. Mielke, P. Scheerer and C. M. Spahn | Structural snapshots of actively translating human ribosomes. | Ribosome | Structural snapshots of actively translating human ribosomes | Cell 161 (4): 845-57. |
2016 | Shalev-Benami, M., Y. Zhang, D. Matzov, Y. Halfon, A. Zackay, H. Rozenberg, E. Zimmerman, A. Bashan, C. L. Jaffe, A. Yonath and G. Skiniotis | 2.8-A Cryo-EM Structure of the Large Ribosomal Subunit from the Eukaryotic Parasite Leishmania. | Ribosome | Cryo-EM structure of the 60s ribosomal subunit of Leishmania (2.8Å) | Cell Rep 16 (2): 288-294. |
2016 | Zhang, X., M. Lai, W. Chang, I. Yu, K. Ding, J. Mrazek, H. L. Ng, O. O. Yang, D. A. Maslov and Z. H. Zhou | Structures and stabilization of kinetoplastid-specific split rRNAs revealed by comparing leishmanial and human ribosomes. | Ribosome | Structure of the 80s ribosome of Leishmania (2.9Å) | Nat Commun 7: 13223. |
2017 | Liu, Z., C. Gutierrez-Vargas, J. Wei, R. A. Grassucci, M. Sun, N. Espina, S. Madison-Antenucci, L. Tong and J. Frank | Determination of the ribosome structure to a resolution of 2.5 A by single-particle cryo-EM. | Ribosome | Cryo-EM structure of the 60S ribosomal subunit of Plasmodium cruzi (2.5 Å) | Protein Sci 26 (1): 82-92. |
2017 | Wong, W., X. C. Bai, B. E. Sleebs, T. Triglia, A. Brown, J. K. Thompson, K. E. Jackson, E. Hanssen, D. S. Marapana, I. S. Fernandez, S. A. Ralph, A. F. Cowman, S. Scheres and J. Baum | Mefloquine targets the Plasmodium falciparum 80S ribosome to inhibit protein synthesis. | Ribosome | Cryo-EM structure of the 80S ribosome of Plasmodium falciparum (3.2 Å) | Nat Microbiol 2: 17031. |
2018 | Kummer, E., M. Leibundgut, O. Rackham, R. G. Lee, D. Boehringer, A. Filipovska and N. Ban | Unique features of mammalian mitochondrial translation initiation revealed by cryo-EM. | Ribosome | Cryo-EM structure of the complete translation initiation complex from mammalian mitochondria (3.2 Å) | Nature 560 (7717): 263-267. |
2019 | Kaledhonkar, S., Z. Fu, K. Caban, W. Li, B. Chen, M. Sun, R. J. Gonzalez and J. Frank | Late steps in bacterial translation initiation visualized using time-resolved cryo-EM. | Ribosome | Late steps in bacterial translation initiation visualized using time-resolved cryo-EM | Nature 570 (7761): 400-404. |
2020 | Waltz, F., H. Soufari, A. Bochler, P. Giege and Y. Hashem | Cryo-EM structure of the RNA-rich plant mitochondrial ribosome. | Ribosome | Cryo-EM structure of the RNA-rich plant mitochondrial ribosome | Nat Plants 6 (4): 377-383. |
2020 | Loveland, A. B., G. Demo and A. A. Korostelev | Cryo-EM of elongating ribosome with EF-Tu•GTP elucidates tRNA proofreading. | Ribosome | Cryo-EM of elongating ribosome with EF-Tu•GTP elucidates tRNA proofreading | Nature 584 (7822): 640-645. |
2020 | Aibara, S., V. Singh, A. Modelska and A. Amunts | Structural basis of mitochondrial translation. | Ribosome | Structural basis of mitochondrial translation (3.0 Å) | Elife 9. |
2020 | Watson, Z. L., F. R. Ward, R. Meheust, O. Ad, A. Schepartz, J. F. Banfield and J. H. Cate | Structure of the bacterial ribosome at 2 A resolution. | Ribosome | Structure of the bacterial ribosome at 2 Å resolution | Elife 9. |
2021 | Kummer, E., K. N. Schubert, T. Schoenhut, A. Scaiola and N. Ban | Structural basis of translation termination, rescue, and recycling in mammalian mitochondria. | Ribosome | Structural basis of translation termination, rescue, and recycling in mammalian mitochondria | Mol Cell 81 (12): 2566-2582.e6. |
2022 | Itoh, Y., A. Khawaja, I. Laptev, M. Cipullo, I. Atanassov, P. Sergiev, J. Rorbach and A. Amunts | Mechanism of mitoribosomal small subunit biogenesis and preinitiation. | Ribosome | Mechanism of mitoribosomal small subunit biogenesis and preinitiation | Nature 606 (7914): 603-608. |